
Chapter 1
Rethinking representation

1

To demonstrate how this works we can teach these rules to a
computer using the Netlogo language which provides a mechanism
for setting up parallel computations very simply (the points are
described using “turtles” –little autonomous computer programs all of
whom obey the program set out below)
to repel
ask turtles
[

set closest-turtle min-one-of other turtles
[distance myself]

set heading towards closest-turtle
back 1

]
end

To understand this piece of code, first notice that the whole thing is
wrapped up in the clause:

To repel

Do something

End

This is because we are defining how to do something for the
computer so here we are setting out how to repel. The stuff between
the word TO and the word END is the actual code. Then comes the
phrase ask turtles. Who, you might ask, is doing this asking? The
turtles are the points in space, they are really a lot of tiny abstract
computers, and the global overall observer is in this statement
sending out a message to all the turtles to run the program enclosed
in the square brackets [] which is the three sentences:

1) set closest-turtle min-one-of other turtles
[distance myself]

2) set heading towards closest-turtle
3) back 1

The turtles are being told
“Dear turtles, I would like to ask you to look through all the other
turtles to find the one whose distance away is at a minimum”
then they must remember which turtle this is by storing its reference
in the name ‘closest-turtle’

Now the turtles are told
“Set your heading so that you are pointing towards this ‘closest-
turtle’, and back off one step”

Interestingly we also have to tell the computer to address the ‘other’
turtles as in the human language description . If we just asked all the
turtles this would include myself (the one doing the ASKing and we
would get a value of zero and try to walk away from ourselves - not a
good idea. This is a good example (the first of many) of how we have
to
S.P.E.L.L. I.T. O.U.T. for these supremely pedantic machines.

The introduction sets out the initial position of text as design
representation. Fundamentally the proposition is that Chomsky’s
dictum – that finite syntax and lexicon can nevertheless generate an
infinite number of useful (well formed) structures – can be applied to
artificial languages, and that texts can be written in those languages
to generate architectural objects, taken to mean ‘well formed’
configurations of space and form. This is the generative algorithm
and the idea is that a generative algorithm is a description of the
object just as much as the measurement and analysis of the object,
the illustration of the object and the fact of its embodiment in the
world.

The position here is that the text we are looking at, being an artificial
language, usually depends for its embodiment on some hardware –
the engineering product of the turing machine – and this hardware
affords some species of representation, from simple graphics all
the way up to programmable hardware, 3d printing and immersive
virtual worlds. But this aspect is simply an unfolding of the underlying
algorithm, which is still the original representation. It would be
possible to orchestrate 300 human beings to obey instructions and
so run the computations in their bodies (by, in the cases below
moving small balls about in a coordinated manner) – it doesn’t
matter, it’s the algorithm that counts.

Some simple texts

As a very first shot, take the example of representing some simple
geometric shapes and volumes like the circle the spheroid and other
3d polyhedra, not using geometry, but small programs written in
a dialect of LOGO (a venerable AI language defined by Seymour
Papert. whose history is elaborated in the next section)

Triangles and Circles

For the 2D case, this can be verified with a simple experiment
using a program with a large number of points in 2D space, initially
randomly sprinkled over the plane.

Give each point a rule
“search through all the other points and find the nearest one to
yourself”
“Then: turn towards this nearest point and back off a little bit”

all the points do this simultaneously.

Of course the problem is that in backing away from your nearest
neighbour you may inadvertently come too close to someone else,
but that’s ok because then you just turn around and back away from
them. Remember that everybody is doing this at the same time.

2 3

Emergent Tessellations

With a suitable repel strength the points all settle down in a triangular
pattern because whenever they diverge from this grid they are in an
unstable situation and will always fall back into the triangular lattice.
The point to note is that these wiggles are not in the algorithm (all it
states is the backing off principle outlined above). What would one
expect from such an algorithm? At first sight perhaps just aimless
wandering; however it does in fact settle down as if pulled into
alignment by some “force” not implied by the two lines of code.
This is an example of “emergence” – the idea that the program,
by operating continuously in parallel engenders a higher order
observation, which could be characterised as a simple demonstration
of the principle that the triangular lattice is the least cost minimum
energy equilibrium point for a 2d tessellation, with each point
equidistant to 6 others. Here is out first example also of an algorithm
which possessed epistemic independence of the model (in this case
the code of the repel algorithm) from the structural output of its being
run. (the stable triangular tessellation)

Distributed representation

This is also the first example of many that illustrates the notion of
distributed representation. The way the algorithm works is to embed
the rules to be simultaneously followed in EACH turtle. Each
turtle (small autonomous computational entity) is running the little
program described above with its own decision making - who is
nearest to MYSELF - and behaves independently of the other little
computers - I turn this THIS WAY and back off. The repel algorithm is
the only available description we can find in this system, everything
else is just general scheduling events and general start stop for
the whole simulation and this representation is present in EVERY
turtle. The turtles can interact with each other and have some limited
observational powers, for instance they can ‘feel’ the nearest turtle

and take appropriate action, but they don’t know about the triangular
tessellation since that can only be observed by the global observer -
in this cas the person (you) running the simulation on your computer.
This distinction between different levels of observer is a key aspect
of distributed representation, and will crop up many times in the
following pages. It is vital with distributed representation models that
there is some feedback present between these little autonomous
programs, if each one took no notice of its neighbours then nothing
would happen. This is evident in the cellular automata shown next
and the canonical ‘pondslime’ algorithm’ introduced last in this
chapter.

It is instructive to compare this bottom up small program with the
conventional recipe for a triangular tessellation. Of course there are
many ways of describing how to draw such a pattern, but using a
simple wallpaper approach you might say:

Wallpaper algorithm

Set out a line of dots at a spacing of 1
Duplicate this line with an offset of 0.5 in the X direction
and the square root of 0.75 in the y direction.
Do this as many times as you like.

The square root of 0.75 is the height of an equilateral triangle of
side 1 derived from Pythagoras (where height2 + 0.52 = 12; so h =
√1-0.25), which evaluates to approximately 0.86602540378443864
676372317075294. This is not a very attractive number and seems
to suggest that this algorithm is not capturing the real description
of the underlying dynamics, but just mechanically constructing a
top down and rather clumsy measurement of the outcome. This
distinction should be remembered when simulations and modelling
are discussed elsewhere, as it forms part of the argument in favour
of the “short description” encoded in the generative rule rather than
the “long description” involved in traditional geometry.

In the left hand image above, the trails of the turtles are
shown moving from the initial random sprinkling to the
triangular grid. It takes about 500 steps for the system to
settle down, and it can be observed that the turtles quite
quickly find a suitable position and then stay there (the
trails don’t stretch very far, and rarely cross).

These and many other examples if programming in
the book are based on NetLogo. This language is a
descendent of StarLogo which in turn was a parallel
implementation of Logo described in the next chapter,
which itself was a development of Lisp (see chapter 3).

A good introduction to this language is Michel Resnic’s
“Turtles Termites and TrafficJams” (MIT press 1995)
which came out with Starlogo

The turtles settle down to triangular least effort configu-
ration

Opposite page a version of the program running with links
shown in the tessellation and radial rings modes. None of
these patterns lasts for long, like all dynamic systems the
moment can be captured, but is gone and lost for ever by
the ceaseless jiggling of the agents.

4 5

Extending the model – drawing circles with turtles

The following examples are based on the Papert paradigm of
allowing the geometry to emerge from the algorithm rather than
being imposed from outside. In this case the geometry is based on
the circle, which is then extended to cover more complex geometries
such as the voronoi (emergent tessellation). These are “illustrations
of consensus” because the bit you can see (the figures below) is the
emergent result of all the components of the system (turtles mostly)
finally reaching some agreement about where to be. The phrase
begs the question as to what the turtles are being asked to agree
about, and what architectural idea might be involved. Generally
the task is to distribute themselves with respect to two conflicting
pressures – that of the group based on some higher order pattern,
and that of the individual.

Papert points out that the equations

Xcirc = originX + Radius cos (angle)
Ycirc = originY + Radius sin (angle)

Do not capture any useful information about circles, whereas we can
write a small program in LOGO to get one turtle to walk in a circle by
telling it to go forward and left a bit. (see chapter 2 for background on
Seymor Papert)

To circle
 Repeat 36
 Forward 1
 Turn Left 10
End repeat
End circle

requires only English and a familiarity with walking.

As Resnic points out in ‘Turtles Termites and Traffic jams’ with
parallel computation we can propose another implementation of the
circle using not just one turtle but many of them. The algorithm is
based on the characterisation of a circle as being:
An array of points all at the same distance from another common
point

To do this with turtles we :

• create a lot of turtles at random
• get each turtle to turn towards the centre of the circle
• get each turtle to measure the distance between itself and

this centre point
• if this distance is less than the desired radius then take a

step back (because you’re too near)
• if it is greater then take a step forward (because you’re too

far away)
• Go on doing this for ever.

This procedure can be written in netlogo as so:

to attract
 ask turtles
 [
 set heading towardsxy 0 0
 ifelse ((distancexy 0 0) < radius)
 [bk 1]
 [fd 1]
]
end

Notice that nowhere in the procedure is it given where the turtles are
to walk to, they just walk back and forth. In fact the “circle” is only
apparent to the human observer, and while we look at it, it shimmers
into being rather than being constructed carefully.
The result is a ring of turtles defining a circle. In fact there is one
more thing to do because just using this process will result in an
uneven circle with gaps in because the turtles start off randomly and
gather in random spacings around the circumference. How can we
get the turtles to spread themselves out? – the answer is to do the
repel procedure we have already looked at. This version backs of not
1 unit but a variable amount controlled by a “slider” on the interface.

to repel
 ask turtles
 [
 set closest-turtle min-one-of other turtles
[distance myself]
 set heading towards closest-turtle
 bk repel-strength
]
end

IFELSE is an example of one of the key concepts of any programming
language, the ability to get the computer to ask a question about which of
a number of things to process. known as a ‘conditional statement’ it has
many forms, but in this language in this situation we use the phrase ‘ifelse’

This construct has to decide which of two possible routes to take in the
flow of the program.
Cheesy illustration: If standing at a fork in the road , with the possiblity of going left or right
you need some way of evaluating the choices open to you. so there you are, what do you do ? It
happens you have a note from your aunt in your pocket, you take it out and it says:

 {“when reaching a fork in the road, if its after lunch turn left, else turn right”}

It is clearly just after lunch, so you take the left turn. Problem resolved. (the left turn takes you to
the tea rooms obviously)

In the script of attract the note from your aunt is asking “if your distance
to the centre less than radius then take a step back otherwise step for-
wards”

The general notion of IFELSE is that you ask a question, then on the basis
of the TRUTH or otherwise of the statement you choose between two
possibilities

IF <something is true> THEN DOTHIS
 ELSE DOTHAT

thats why its called ifelse
formally
ifelse (conditional expression)
 [thing to do if true]
 [thing to do if false]

6 7

These two procedures use two references to globally defined values
which affect the system being simulated, called ‘radius’ and ‘repel
strength’. These named values are referred to as variables (because
they can contain numbers that vary of course). In Netlogo you can
set the variables through the user interface by using sliders.

You might say that this isn’t a ‘real’ circle, but just a messy thing
that is a bit circular. But, like the triangular tesselation example the
classical definition of pi as the ratio of the circumference divided by
the diameter is famously unresolvable. In fact the expansion of pi
can be used as the basis for generating a random sequence as it is
impossible to predict the next number in the sequence by any means
other than continuing to iterate the division sum. In other word in
our universe circles cannot be identified with whole numbers, every
measurement of a circular thing is inevitably a compromise, only
resolved by its eventual instantiation into an array of bricks, pieces
of steel etc. So repel and attract (which only use simple adds and
no funny ratios) seem more fundamental descriptions, generating
the funny ratios out of the process rather than squashing them in by
force.
With these two variables, ‘repel’ and ‘attract’ form a useful test
bed for experiments. There is a relationship between the values
of the variables such that, if you make the radius very small then
you of course make a smaller circle, then if you make the repel
strength quite large, then depending on the number of turtles
(another variable) the turtles will find it impossible for all of them
to comfortably fit on the circumference. The actual result is quite
surprising, as it leads to a series of well formed rings of turtles at
ever increasing distances from the nucleus. In many ways this could
be seen as a model of bohrs model of the atom, since the radius is
the overall energy of the atom and the repulsion force is the energy
level of an electron. (this is intended only as an illustration of the
possible explanatory power of these simple models and not a claim
to deep physical truth!). What is undeniable is that, instead of a
general fuzzy ring of turtles from radius outwards, they only inhabit
particular rings, which again is not in the model. The text of the
algorithm does not include an explicit reference to annular ringyness,
but only one circle.

Given the high level of abstraction we can begin to model more
complex shapes and spatial organisations than individual geometric
objects without having to do much extra coding.

Illustrations of consensus
A photograph taken lying on the floor of the Turbine Hall Gallery at the Tate Modern London,
looking up to the mirrored ceiling. (Thanks to MSc student Stefan Krakhofer). It shows how
people have arranged themselves in a circular pattern (there is another one forming to the
right of the image) without there being any formal “directive”. The actual geometry is not
obvious while walking about the gallery, and only shows up once you lie down on your back,
and get the gods eye view – when one becomes the external observer).

8 9

Extending the model - drawing bubbles

A more complex outcome that we can achieve with only small
modifications is the emergent voronoi diagram (dirichelet
tessellations). Voronoi diagrams are conventionally calculated
using computational geometry. A voronoi diagram is a pattern which
describes the minimal energy pathways between a set of points.
Looking at such a diagram we can see that each initial point is
separated from its immediate neighbours by being enclosed in a
polygon, face joining the polygons of all its neighbours.

Taking the two procedures attract and repel we can make a small
modification to the attract one, so that instead of turtles being
attracted to the constant location 0 0 they are interested instead in
another of the turtles acting as a “target”. So we can make two kinds
of turtles – normal ones and targets. Both the normal turtles and the
target turtles obey the repel rule, but the attract rule only applies to
normal turtles, who try to stay at a particular radius from the target
turtles.

to attract
 locals [targets]

ask turtles
[
 set targets turtles with [target = true]
 set closest-turtle min-one-of other

targets [distance myself]
 set heading towards closest-turtle
 ifelse ((distance closest-turtle) <

radius) [bk 1] [fd 1]
]

end

Emergent spatial tessellation of minimal path polygons

In this series(left to right) a very large number of turtles slowly retreat
from the stationary targets (larger dots) to form the boundaries of
the voronoi tessellation. This is an example of an emergent self
organised structure, where the algorithm goes with the flow of the
problem to be solved, namely draw the equidistant boundaries given
the initial distribution of points. The answer emerges naturally from
the very simple process described above.
The difference between the code for drawing a circle and the code
for drawing a voronoi diagram using the traditional “computational
geometry” approach is huge, the two trig functions described earlier
have to be expanded to many pages of code dealing with complex
maths and elaborate sorting and scheduling procedures in order to
define the polygons, whereas the step from circle to voronoi using
the attract and repel procedures is simply to have two kinds of turtles
and a lot more of them!

All this is intended to illustrate the fundamental point about how
representational methods can change when we use the turing
machine to generate form. as we shall see in the next section
the complexity of the emergent forms can be much higher than
defining them in purely geometric ways. With these two texts
we can represent a huge range of objects, and interestingly the
representation hardly has to change at all to accommodate the 3rd
dimension.

The simulation begins with the two kinds of turtles sprijnkled randomly about ‘normal’ turtles (little)and ‘target’ ones (big).Slowly the smaller normal turtles retreat to the given
radius distance in the attcat procedure, gathering on the boundaries in ever greater numbers. they cant go near other targets but end up in a position which is as far away from
all the nearest targets

If the program models the process to be
represented rather than the graphics of the
outcome it is likely to be a better , shorter model.

Image of mould growing in a coffee cup showing
agglomeration of disc like elements into a voronoi
like mat

10 11

Attribute VB_Name = “Voronoibits”

 ‘-------------------------------------
-- changing datastructure to hold indeces
into originalpoints
 ‘---------------------------
------------ rather than points
11.6.03----------------------
 ‘ defining the cells of the voronoi
diagram
 ‘ working 26 june 03

 Const pi = 3.1415926535
 Const yspace = 0
 Const xspace = 1

 Type pointedge
 pos As point ‘position of in-
tersection
 Bedge(2) As Integer ‘indeces into
boundary array where intersection occurs
 End Type

 Type intersectStuff
 outnode As point
 outnodeid As Integer ‘index into vertex
array for voronoi cell
 beforeinter As pointedge
 afterinter As pointedge
 End Type

 Const VERYSLOW = 0.7
 Type mypoint
 x As Double
 y As Double
 z As Double
 spacetype As Integer
 kuller As Integer
 End Type

 Type pair ‘to tie the triangle nos to
the sorted angles
 value As Double
 index As Integer
 End Type

 Type delaunay
 p1 As Integer
 p2 As Integer
 p3 As Integer
 circcentre As mypoint ‘ the
coordinates of the centre of the circle by
3 pts constructed by this point
 circrad As Double ‘ the
radius of this circle
 End Type

 Type cell
 item() As Integer
 tot As Integer
 area As Double
 id As Long
 spacetype As Integer
 jump As Boolean
 kuller As Integer
 End Type

 Public pts As Integer
 Public numtriangles As Integer
 Public originalpoints() As mypoint
 Public triangles() As delaunay
 Public cells() As cell
 Public neighbour() As cell

 Public cyclesmax As Long
 Public cycles As Long

 Sub voronoi(d As Integer)
 ReDim cells(1 To pts) As cell
 ReDim neighbour(1 To pts) As cell
 Dim i As Integer, j As Integer, k
As Integer

 For i = 1 To pts
 cells(i).spacetype = originalpoints(i).
spacetype ‘ having been set in teatime
 cells(i).kuller = originalpoints(i).
kuller
 Next i

 cycles = 0
 numtriangles = 0
 ‘cyclesmax = pts ^ 3

 For i = 1 To pts
 For j = i + 1 To pts
 For k = j + 1 To pts
 ‘ the triangles array is popu-
lated in the sub drawcircle - sorry !!
 drawcircle_ifnone_inside
i, j, k, pts
 cycles = cycles + 1
 ‘counterform.count_Click
 Next k
 Next j
 Next i

 collectcells (0) ‘define data for
all voronoi cells
 neighcells (0) ‘define

 End Sub
 Sub collectcells(d As Integer) ‘ popu-
lates array cells with lists of all the
vertex incident triangles of a point
 Dim v As Integer, N As Integer, t
As Integer

 For v = 1 To pts ‘ go through all the
original points
 N = 0
 ReDim cells(v).item(1 To 1)
 ‘ drawpoint originalpoints(V),
acGreen, 2
 ‘ ThisDrawing.Regen acAllView-
ports

 For t = 1 To numtriangles ‘go
through all triangles
 If triangles(t).p1 = v Or
triangles(t).p2 = v Or triangles(t).p3 =
v Then
 N = N + 1 ‘’ T is index into a
tri sharing a vertex with originalcells(V)
 ReDim Preserve cells(v).
item(1 To N)
 cells(v).item(N) = t
 cells(v).tot = N
 End If
 Next t
 sortbyangle v, cells(v)
 Next v
 End Sub
 Function centre_gravity(this As delau-
nay) As mypoint
 Dim tx As Double, ty As Double, tz
As Double
 tx = (originalpoints(this.
p1).x + originalpoints(this.p2).x +
originalpoints(this.p3).x) / 3
 ty = (originalpoints(this.
p1).y + originalpoints(this.p2).y +
originalpoints(this.p3).y) / 3
 tz = 0

 centre_gravity.x = tx
 centre_gravity.y = ty
 centre_gravity.z = tz

 End Function

 Sub sortbyangle(index As Integer, this
As cell)
 Dim angles() As pair, i As Integer, O
As mypoint, CG As mypoint
 ReDim angles(1 To this.tot) As pair
 O = originalpoints(index)
 For i = 1 To this.tot
 CG = centre_gravity(triangles(this.
item(i)))
 angles(i).value = getangle(O,
CG)
 angles(i).index = this.item(i)
 Next i
 bubblesort angles, this.tot
 For i = 1 To this.tot
 this.item(i) = angles(i).index
 Next i

 End Sub
 Sub bubblesort(s() As pair, N As In-
teger)
 Dim index As Integer, c As Integer,
swap As Integer, temp As pair

Do
 swap = False
 For c = 1 To N - 1

 If s(c).value > s(c + 1).value
Then
 temp = s(c)
 s(c) = s(c + 1)
 s(c + 1) = temp
 swap = True
 End If

 Next c
Loop Until (swap = False)

End Sub
Function getangle(st As mypoint, fin As my-
point) As Double

Dim q As Integer, head As Double, add As
Double
Dim xd As Double, yd As Double, r As Dou-
ble
‘ calculate quadrant
If fin.x > st.x Then
 If fin.y > st.y Then
 q = 1
 Else
 q = 2
 End If
 Else
 If fin.y < st.y Then
 q = 3
 Else
 q = 4
 End If
 End If

 Select Case q

 Case 1
 xd = fin.x - st.x
 yd = fin.y - st.y
 If xd = 0 Then
 r = pi / 2
 Else
 r = yd / xd
 End If
 add = 0
 Case 2
 yd = st.y - fin.y
 xd = fin.x - st.x
 add = 270
 If yd = 0 Then
 r = pi / 2
 Else

 r = xd / yd
 End If
 Case 3

 xd = st.x - fin.x
 yd = st.y - fin.y
 If xd = 0 Then
 r = pi / 2
 Else
 r = yd / xd
 End If
 add = 180
 Case 4
 xd = st.x - fin.x
 yd = fin.y - st.y
 If yd = 0 Then
 r = pi / 2
 Else
 r = xd / yd
 End If
 add = 90
 End Select

 If xd = 0 Then
 getangle = 90 + add
 Else
 getangle = ((Atn(r) / pi) * 180) + add
 End If

End Function
 Sub neighcells(d As Integer)

 Dim v As Integer, N As Integer, nbs As
Integer, cp As Integer

 For v = 1 To pts
 nbs = 0 ‘go
through the item list for this cell (based
on vertex V)
 For cp = 1 To cells(v).tot - 1
‘the indeces into array cells
 N = matchupcells(cells(v).
item(cp), cells(v).item(cp + 1), v) ‘two
points on the voronoi region
 If N > 0 Then
 nbs = nbs + 1
 ReDim Preserve neighbour(v).
item(1 To nbs)
 neighbour(v).item(nbs)
= N
 neighbour(v).tot = nbs
 End If
 Next cp
 Next v
 End Sub

Function matchupcells(p1 As Integer, p2 As
Integer, current As Integer) As Integer

‘ find a cell (in array cells)which shares
an edge p1 - p2 with this cell (current)
Dim m As Integer, v As Integer, cp As In-
teger

matchupcells = 0

 For v = 1 To pts
 If v <> current Then ‘dont look
at you own list
 m = 0

 ‘a voronoi region can only share
two verteces (one edge) with any other
 ‘but since the edges are organ-
ised anti clockwise, the neighbouring cell
 ‘will be going the other way.
so here we just look for two matches hope
thats ok?
 For cp = 1 To cells(v).tot
‘run through vertex list for this cell
 If cells(v).item(cp) =
p1 Then m = m + 1
 If cells(v).item(cp) =
p2 Then m = m + 1
 Next cp
 If m = 2 Then
 matchupcells = v
 Exit For ‘dont go
on looking once found a match
 End If
 End If
 Next v
 End Function

 Sub drawcircle_ifnone_inside(i As In-
teger, j As Integer, k As Integer, pts As
Integer)
 Dim testcircle As delaunay

 testcircle.p1 = i
 testcircle.p2 = j
 testcircle.p3 = k
 circbythreepts testcircle
 If Not inside(testcircle, pts) Then
 ‘drawpoint testcircle.circcentre,
acYellow, testcircle.circrad
 numtriangles = numtriangles + 1
 ReDim Preserve triangles(1 To
numtriangles)
 triangles(numtriangles) = test-
circle
 End If

 End Sub

 Function inside(this As delaunay, pts
As Integer) As Integer
 ‘ are there any points closer to the
centre of this circle than the radius

 inside = False
 Dim i As Integer, dd As Double, cr
As Double

 For i = 1 To pts
 ‘ignore points that are on this circle
 If i <> this.p1 And i <> this.p2
And i <> this.p3 Then
 dd = distance(this.circcentre,
originalpoints(i))
 cr = this.circrad
 If (dd < cr) Then
 inside = True
 Exit For
 End If
 End If
 Next i
 End Function
 Sub circbythreepts(this As delaunay)

 Dim a As Double, b As Double, c As Dou-
ble, k As Double, h As Double, r As Double,
d As Double, e As Double, f As Double
 Dim pos As mypoint
 Dim k1 As Double, k2 As Double, h1 As
Double, h2 As Double

 a = originalpoints(this.p1).x: b =
originalpoints(this.p1).y
 c = originalpoints(this.p2).x: d =
originalpoints(this.p2).y
 e = originalpoints(this.p3).x: f =
originalpoints(this.p3).y

 ‘three points (a,b), (c,d), (e,f)
 ‘k = ((a²+b²)(e-c) + (c²+d²)(a-e) +
(e²+f²)(c-a)) / (2(b(e-c)+d(a-e)+f(c-a)))
 k1 = (((a ^ 2) + (b ^ 2)) * (e - c)) +
(((c ^ 2) + (d ^ 2)) * (a - e)) + (((e ^ 2)
+ (f ^ 2)) * (c - a))
 k2 = (2 * ((b * (e - c)) + (d * (a - e))
+ (f * (c - a))))

 k = k1 / k2

 ‘h = ((a²+b²)(f-d) + (c²+d²)(b-f) +
(e²+f²)(d-b)) / (2(a(f-d)+c(b-f)+e(d-b)))
 h1 = (((a ^ 2) + (b ^ 2)) * (f - d)) +
(((c ^ 2) + (d ^ 2)) * (b - f)) + (((e ^ 2)
+ (f ^ 2)) * (d - b))
 h2 = (2 * (((a * (f - d)) + (c * (b - f))
+ (e * (d - b)))))
 h = h1 / h2

 ‘the circle center is (h,k) with radius;
r² = (a-h)² + (b-k)²
 r = Sqr((a - h) ^ 2 + (b - k) ^ 2)

 pos.x = h: pos.y = k: pos.z = 0
 ‘’drawpoint pos, acYellow, r
 this.circcentre = pos
 this.circrad = r

 End Sub

 Sub convert(b As mypoint, f As mypoint,
start() As Double, finish() As Double)

 start(0) = b.x
 start(1) = b.y
 start(2) = b.z
 finish(0) = f.x
 finish(1) = f.y
 finish(2) = f.z
 End Sub

 Function findcenter(pts As Integer) As
mypoint
 Dim xt As Double, yt As Double

 xt = 0
 yt = 0

 For i = 1 To pts
 xt = xt + originalpoints(i).x
 yt = yt + originalpoints(i).y
 Next i

 findcenter.x = xt / pts
 findcenter.y = yt / pts
 findcenter.z = 0

 End Function

 Sub Draw_Line(b As mypoint, f As my-
point, c As Integer)
 Dim lineobj As AcadLine
 Dim mLineObj As AcadMLine
 Dim start(0 To 2) As Double, finish(0
To 2) As Double

 convert b, f, start, finish

 Set lineobj = ThisDrawing.ModelSpace.
AddLine(start, finish)

 lineobj.color = c
 lineobj.Layer = “delaunay”
 ‘lineobj.Update

 End Sub
 Sub drawpoly(this As cell)
 Dim tri As delaunay
 Dim plineObj As AcadLWPolyline
‘changed to lw polyline so only duets of
coords not trios
 Dim thepoly(0) As AcadEntity ‘thing
to use in addregion
 Dim boundary As Variant ‘assign
with addregion
 Dim boundy() As AcadRegion ‘thing
you redim
 Dim acell As AcadRegion
 Dim numtri As Integer, thepoints()

As Double, TPC As Integer
 numtri = this.tot * 2 - 1
 ReDim thepoints(numtri + 2) As Double
 TPC = 0

 ‘ loop through all the items getting the
coordinates of the circlcentres that are
 ‘ inside the elements of the thetri-
angles array

 For i = 1 To this.tot
 thepoints(TPC) = triangles(this.
item(i)).circcentre.x
 TPC = TPC + 1
 thepoints(TPC) = triangles(this.
item(i)).circcentre.y
 TPC = TPC + 1
 ‘ thepoints(TPC) = triangles(this.
item(i)).circcentre.z
 ‘ TPC = TPC + 1
 Next i
 thepoints(TPC) = thepoints(0)
 TPC = TPC + 1: thepoints(TPC) = thep-
oints(1)
 ‘TPC = TPC + 1: thepoints(TPC) = thep-
oints(2)

 If TPC > 3 Then
 On Error Resume Next ‘got crash
on huge poly
 Set plineObj = ThisDrawing.Model-
Space.AddLightWeightPolyline(thepoints)
 If plineObj.area > 0 Then

 Set acell = makeregion(plineObj)

 On Error Resume Next
 acell.Boolean acIntersec-
tion, bound
 this.area = acell.area
 this.id = acell.ObjectID
‘changed to acell
 If this.spacetype = 1 Then
 acell.color = this.kuller
 Else
 acell.color = acWhite
 End If

 ‘ acell.Update
 ‘ ThisDrawing.Regen acAc-
tiveViewport
 makeboundaryregion 0

 End If

 End If

 End Sub

 Sub drawcircle(x As Variant, y As Vari-
ant, kuller As Integer, size As Integer)
 Dim p(2) As Double, circ As AcadCircle
 p(0) = x: p(1) = y: p(2) = 0
 Set circ = ThisDrawing.ModelSpace.
AddCircle(p, size)
 circ.color = kuller
 ‘ circ.Update

 End Sub
 Function random(bn As Double, tn As
Double) As Double

 random = ((tn - bn + 1) * Rnd
+ bn)

 End Function

 Function distance(startp As mypoint,
endp As mypoint) As Double
 Dim xd As Double, yd As Double
 xd = startp.x - endp.x
 yd = startp.y - endp.y
 distance = Sqr(xd * xd + yd * yd)
 End Function

 Sub drawpoint(pos As mypoint, c As In-
teger, r As Double)
 ‘ This example creates a point in
model space.
 Dim circleObj As AcadCircle
 Dim location(0 To 2) As Double
 location(0) = pos.x
 location(1) = pos.y
 location(2) = pos.z
 ‘ Create the point
 Set circleObj = ThisDrawing.Mod-
elSpace.AddCircle(location, r)
 circleObj.color = c
 ‘ZoomAll
 End Sub

The code on this page can be contrasted
with the short snippet on the previous page.
both are doing essentially the same thing
- generating the minimal path tessellation
known as a Voronoi Diagram. However one
is written in NetLogo as parallel process
of dynamic systems of turtles, the other in
BASIC as an exercise in computational
geometry. (code by the author). not only
is the BASIC enormously longer, but it
is also much more restrictive in that it
doesn’t allow for easy manipulation of the
underlying generating points or alterations
of the dynamics of the particles. the
only advantage this approach has over
the emergent version is that the defined
polygons are explicitly defined by ordered
line segments whereas the images taken
from the agent based examples would need
a little post processing to define them.

BASIC is a very old programming language
used in many windows applications to
automate operations. See chapter 3 for a
discussion of the badness of BASIC

Voronoi by computational Geometry. this
was generated as part of an experiment
in recursive voronoi diagrams where each
generation provides the seed points for the
next diagram

12 13

Moving into the 3rd dimension

The code below is pretty much the same as before (there are a few differences due to the 3d version of the
language being a revision behind the 2d version but we can ignore those) apart from that the only difference is the
use of the word pitch as well as heading, which allows the turtles to point towards things in 3d space

to attract

ask nodes
[
 set closest-turtle min-one-of targets with other targets [distance myself]
 set heading towards-nowrap closest-turtle
 set pitch towards-pitch-nowrap closest-turtle
 ifelse ((distance closest-turtle) < radius) [bk 1] [fd 1]
]

end

to repel-nodes

ask nodes

 [
 set closest-turtle min-one-of nodes with other nodes [distance myself]

 set heading towards-nowrap closest-turtle
 set pitch towards-pitch-nowrap closest-turtle
 bk repel-strength
]
end

When running these simulations another thing that distinguishes this approach from geometry is apparent - rather
than in the top down computational approach where a lot of works goes on until the “solution” in presented to you
in one fell swoop, here the emergent organisation occurs as a visible process that sometimes has to be teased
along with small tweaks of attract and repel values. Sometimes the whole thing descends into a chaotic muddle
and cannot be retrieved without stopping and starting again. The algorithm for stitching the turtles together with line
shaped turtles is typical of the bottom up approach.

Once the closest turtle has been found we ask each node to create a link with it. the “link” turtle is a special feature
of netlogo which behaves intelligently in that if the target node is already connected then this is not attempted
again. in he course of a run the ‘nearest turtle’ will change so it is necessary to clear out existing links - this is easily
accomplished with ‘clear-links’ (a special button - not shown - is needed for this)

From rings of points to spherical clouds. Below, using a link turtle to join the dots

14 15

ask nodes

 [
 set closest-turtle min-one-of other nodes [distance myself]
 set heading towards-nowrap closest-turtle
 set pitch towards-pitch-nowrap closest-turtle
 bk repel-strength
 create-link-with closest-turtle

]
end

One might ask why this simple algorithm doesn’t lead to links which cross the middle of the
emerging spheroid, but remember that the attract and repel procedures have a habit of
making sure that everyone’s nearest neighbour is to be found on the ‘shell’. Where several
spheroids meet (as in the images facing) a certain amount of negotiation takes place with
things jiggling about until most people are happy. The important point here is that no more
code has to be written, this is an emergent outcome of the process provided for free by the
dynamics of the system.

After everything has settled down (the ‘emergent consensus’ proposed at the start of this
chapter) the self organised turtle configurations can be exported to other packages for
further processing. In the images shown left the turtle coordinates are read into Autocad
using a small visual basic script, and spheres and cylinders are drawn between the points
of the nodes and links. Further processing to tile up the mesh and rendering can be
achieved with your favourite CAD package.

further processing to develop the emergent distributions into varieties of forms

16 17

