
Chapter 1 
Rethinking representation
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To demonstrate how this works we can teach these rules to a 
computer using the Netlogo language which provides a mechanism 
for setting up parallel computations very simply (the points are 
described using “turtles” –little autonomous computer programs all of 
whom obey the program set out below)
to repel
ask turtles
[

set closest-turtle   min-one-of other turtles 
[distance  myself] 

set heading towards closest-turtle
back 1

]
end

To understand this piece of code, first notice that the whole thing is 
wrapped up in the clause:

To repel

Do something

End

This is because we are defining how to do something for the 
computer so here we are setting out how to repel. The stuff between 
the word TO and the word END is the actual code. Then comes the 
phrase ask turtles. Who, you might ask, is doing this asking? The 
turtles are the points in space, they are really a lot of tiny abstract 
computers, and the global overall observer is in this statement 
sending out a message to all the turtles to run the program enclosed 
in the square brackets [  ] which is the three sentences:

1) set closest-turtle min-one-of other turtles  
[distance  myself] 

2) set heading towards closest-turtle
3) back 1
 
The turtles are being told 
“Dear turtles, I would like to ask you to look through all the other 
turtles to find the one whose distance away is at a minimum”
then they must remember which turtle this is by storing its reference 
in the name ‘closest-turtle’

Now the turtles are told
“Set your heading so that you are pointing towards this ‘closest-
turtle’, and back off one step”

Interestingly we also have to tell the computer to address the ‘other’ 
turtles as in the human language description . If we just asked all the 
turtles this would include myself (the one doing the ASKing and we 
would get a value of zero and try to walk away from ourselves - not a 
good idea. This is a good example (the first of many) of how we have 
to 
S.P.E.L.L. I.T. O.U.T. for these supremely pedantic machines.

The introduction sets out the initial position of text as design 
representation. Fundamentally the proposition is that Chomsky’s 
dictum – that finite syntax and lexicon can nevertheless generate an 
infinite number of useful (well formed) structures – can be applied to 
artificial languages, and that texts can be written in those languages 
to generate architectural objects, taken to mean ‘well formed’ 
configurations of space and form. This is the generative algorithm 
and the idea is that a generative algorithm is a description of the 
object just as much as the measurement and analysis of the object, 
the illustration of the object and the fact of its embodiment in the 
world.

The position here is that the text we are looking at, being an artificial 
language, usually depends for its embodiment on some hardware – 
the engineering product of the turing machine – and this hardware 
affords some species of representation, from simple graphics all 
the way up to programmable hardware, 3d printing and immersive 
virtual worlds. But this aspect is simply an unfolding of the underlying 
algorithm, which is still the original representation. It would be 
possible to orchestrate 300 human beings to obey instructions and 
so run the computations in their bodies (by, in the cases below 
moving small balls about in a coordinated manner) – it doesn’t 
matter, it’s the algorithm that counts.

Some simple texts

As a very first shot, take the example of representing some simple 
geometric shapes and volumes like the circle the spheroid and other 
3d polyhedra, not using geometry, but small programs written in 
a dialect of LOGO (a venerable AI language defined by Seymour 
Papert. whose history is elaborated in the next section) 

Triangles and Circles

For the 2D case, this can be verified with a simple experiment 
using a program with a large number of points in 2D space, initially 
randomly sprinkled over the plane.

Give each point a rule 
“search through all the other points and find the nearest one to 
yourself”
“Then: turn towards this nearest point and back off a little bit”

all the points do this simultaneously. 

Of course the problem is that in backing away from your nearest 
neighbour you may inadvertently come too close to someone else, 
but that’s ok because then you just turn around and back away from 
them. Remember that everybody is doing this at the same time. 
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Emergent Tessellations

With a suitable repel strength the points all settle down in a triangular 
pattern because whenever they diverge from this grid they are in an 
unstable situation and will always fall back into the triangular lattice. 
The point to note is that these wiggles are not in the algorithm (all it 
states is the backing off principle outlined above). What would one 
expect from such an algorithm? At first sight perhaps just aimless 
wandering; however it does in fact settle down as if pulled into 
alignment by some “force” not implied by the two lines of code. 
This is an example of “emergence” – the idea that the program, 
by operating continuously in parallel engenders a higher order 
observation, which could be characterised as a simple demonstration 
of the principle that the triangular lattice is the least cost minimum 
energy equilibrium point for a 2d tessellation, with each point 
equidistant to 6 others. Here is out first example also of an algorithm 
which possessed epistemic independence of the model (in this case 
the code of the repel algorithm) from the structural output of its being 
run. ( the stable triangular tessellation)

Distributed representation

This is also the first example of many that illustrates the notion of 
distributed representation. The way the algorithm works is to embed 
the rules to be simultaneously followed in EACH turtle. Each 
turtle (small autonomous computational entity) is running the little 
program described above with its own decision making - who is 
nearest to MYSELF - and behaves independently of the other little 
computers - I turn this THIS WAY and back off. The repel algorithm is 
the only available description we can find in this system, everything 
else is just general scheduling events and general start stop for 
the whole simulation and this representation is present in EVERY 
turtle. The turtles can interact with each other and have some limited 
observational powers, for instance they can ‘feel’ the nearest turtle 

and take appropriate action, but they don’t know about the triangular 
tessellation since that can only be observed by the global observer - 
in this cas the person (you) running the simulation on your computer. 
This distinction between different levels of observer is a key aspect 
of distributed representation, and will crop up many times in the 
following pages. It is vital with distributed representation models that 
there is some feedback present between these little autonomous 
programs, if each one took no notice of its neighbours then nothing 
would happen. This is evident in the cellular automata shown next 
and the canonical ‘pondslime’ algorithm’  introduced last in this 
chapter.

It is instructive to compare this bottom up small program with the 
conventional recipe for a triangular tessellation. Of course there are 
many ways of describing how to draw such a pattern, but using a 
simple wallpaper approach you might say:

Wallpaper algorithm

Set out a line of dots at a spacing of 1
Duplicate this line with an offset of 0.5 in the X direction 
and the square root of 0.75 in the y direction. 
Do this as many times as you like.

The square root of 0.75 is the height of an equilateral triangle of 
side 1 derived from Pythagoras (where height2 + 0.52 = 12; so h = 
√1-0.25), which evaluates to approximately 0.86602540378443864
676372317075294. This is not a very attractive number and seems 
to suggest that this algorithm is not capturing the real description 
of the underlying dynamics, but just mechanically constructing a 
top down and rather clumsy measurement of the outcome. This 
distinction should be remembered when simulations and modelling 
are discussed elsewhere, as it forms part of the argument in favour 
of the “short description” encoded in the generative rule rather than 
the “long description” involved in traditional geometry.

In the left hand image above, the trails of the turtles are 
shown moving from the initial random sprinkling to the 
triangular grid. It takes about 500 steps for the system to 
settle down, and it can be observed that the turtles quite 
quickly find a suitable position and then stay there (the 
trails don’t stretch very far, and rarely cross).

These and many other examples if programming in 
the book are based on NetLogo. This language is a 
descendent of StarLogo which in turn was a parallel 
implementation of Logo described in the next chapter, 
which itself was a development of Lisp (see chapter 3).

A good  introduction to this language is  Michel Resnic’s 
“Turtles Termites and TrafficJams” (MIT press 1995) 
which came out with Starlogo 

The turtles settle down to triangular least effort configu-
ration

Opposite page a version of the program running with links 
shown in the tessellation and radial rings modes. None of 
these patterns lasts for long, like all dynamic systems the 
moment can be captured, but is gone and lost for ever by 
the ceaseless jiggling of the agents.
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Extending the model – drawing circles with turtles

The following examples are based on the Papert paradigm of 
allowing the geometry to emerge from the algorithm rather than 
being imposed from outside. In this case the geometry is based on 
the circle, which is then extended to cover more complex geometries 
such as the voronoi (emergent tessellation). These are “illustrations 
of consensus” because the bit you can see (the figures below) is the 
emergent result of all the components of the system (turtles mostly) 
finally reaching some agreement about where to be. The phrase 
begs the question as to what the turtles are being asked to agree 
about, and what architectural idea might be involved. Generally 
the task is to distribute themselves with respect to two conflicting 
pressures – that of the group based on some higher order pattern, 
and that of the individual.
 
Papert points out that the equations

Xcirc = originX + Radius cos (angle)
Ycirc = originY + Radius sin (angle)

Do not capture any useful information about circles, whereas we can 
write a small program in LOGO to get one turtle to walk in a circle by 
telling it to go forward and left a bit. (see chapter 2 for background on 
Seymor Papert)

To circle
 Repeat 36
 Forward 1
 Turn Left 10
End repeat
End circle

requires only English and a familiarity with walking.

As Resnic points out in ‘Turtles Termites and Traffic jams’  with 
parallel computation we can propose another implementation of the 
circle using not just one turtle but many of them.  The algorithm is 
based on the characterisation of a circle as being:
An array of points all at the same distance from another common 
point

To do this with turtles we :

• create a lot of turtles at random
• get each turtle to turn towards the centre of the circle 
• get each turtle to measure the distance between itself and 

this centre point
• if this distance is less than the desired radius then take a 

step back (because you’re too near)
• if it is greater then take a step forward (because you’re too 

far away)
• Go on doing this for ever.

This procedure can be written in netlogo as so:

to attract
 ask turtles
 [
  set heading towardsxy 0 0
  ifelse ((distancexy 0 0 ) < radius) 
   [bk 1] 
   [fd 1]
 ]
end

Notice that nowhere in the procedure is it given where the turtles are 
to walk to, they just walk back and forth. In fact the “circle” is only 
apparent to the human observer, and while we look at it, it shimmers 
into being rather than being constructed carefully.
The result is a ring of turtles defining a circle.  In fact there is one 
more thing to do because just using this process will result in an 
uneven circle with gaps in because the turtles start off randomly and 
gather in random spacings around the circumference.  How can we 
get the turtles to spread themselves out? – the answer is to do the 
repel procedure we have already looked at. This version backs of not 
1 unit but a variable amount controlled by a “slider” on the interface. 

to repel
     ask turtles
      [
     set closest-turtle min-one-of other turtles  
[distance myself]       
     set heading towards closest-turtle
     bk repel-strength
       ]
end

IFELSE is an example of one of the key concepts of any programming 
language, the ability to get the computer to ask a question about which of 
a number of things to process. known as a ‘conditional statement’ it has 
many forms, but in this language in this situation we use the phrase ‘ifelse’

This construct has to decide which of two possible routes to take in the 
flow of the program. 
Cheesy illustration: If standing at a fork in the road , with the possiblity of going left or right 
you need some way of evaluating the choices open to you. so there you are, what do you do ? It 
happens you have a note from your aunt in your pocket, you take it out and it says:

 {“when reaching a fork in the road,  if its after lunch turn left, else turn right”}

It is clearly just after lunch, so you take the left turn. Problem resolved. (the left turn takes you to 
the tea rooms obviously)

In the script of attract the note from your aunt is asking “if your distance 
to the centre less than radius then take a step back otherwise step for-
wards”

The general notion of IFELSE is that you ask a question, then on the basis 
of the TRUTH or otherwise of the statement you choose between two 
possibilities

IF <something is true> THEN DOTHIS 
   ELSE DOTHAT

thats why its called ifelse
formally
ifelse (conditional expression)
 [thing to do if true]
 [thing to do if false]
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These two procedures use two references to globally defined values 
which affect the system being simulated, called ‘radius’ and ‘repel 
strength’. These named values are referred to as variables (because 
they can contain numbers that vary of course). In Netlogo you can 
set the variables through the user interface by using sliders.

You might say that this isn’t a ‘real’ circle, but just a messy thing 
that is a bit circular. But, like the triangular tesselation example the 
classical definition of pi as the ratio of the circumference divided by 
the diameter is famously unresolvable. In fact the expansion of pi 
can be used as the basis for generating a random sequence as it is 
impossible to predict the next number in the sequence by any means 
other than continuing to iterate the division sum. In other word in 
our universe circles cannot be identified with whole numbers, every 
measurement of a circular thing is inevitably a compromise, only 
resolved by its eventual instantiation into an array of bricks, pieces 
of steel etc. So repel and attract (which only use simple adds and 
no funny ratios) seem more fundamental descriptions, generating 
the funny ratios out of the process rather than squashing them in by 
force.
With these two variables, ‘repel’ and ‘attract’ form a useful test 
bed for experiments. There is a relationship between the values 
of the variables such that, if you make the radius very small then 
you of course make a smaller circle, then if you make the repel 
strength quite large, then depending on the number of turtles 
(another variable) the turtles will find it impossible for all of them 
to comfortably fit on the circumference. The actual result is quite 
surprising, as it leads to a series of well formed rings of turtles at 
ever increasing distances from the nucleus. In many ways this could 
be seen as a model of bohrs model of the atom, since the radius is 
the overall energy of the atom and the repulsion force is the energy 
level of an electron. (this is intended only as an illustration of the 
possible explanatory power of these simple models and not a claim 
to deep physical truth!). What is undeniable is that, instead of a 
general fuzzy ring of turtles from radius outwards, they only inhabit 
particular rings, which again is not in the model. The text of the 
algorithm does not include an explicit reference to annular ringyness, 
but only one circle.

Given the high level of abstraction we can begin to model more 
complex shapes and spatial organisations than individual geometric 
objects without having to do much extra coding. 

Illustrations of consensus
A photograph taken lying on the floor of the Turbine Hall Gallery at the Tate Modern London, 
looking up to the mirrored ceiling. (Thanks to MSc student Stefan Krakhofer). It shows how 
people have arranged themselves in a circular pattern (there is another one forming to the 
right of the image) without there being any formal “directive”. The actual geometry is not 
obvious while walking about the gallery, and only shows up once you lie down on your back, 
and get the gods eye view – when one becomes the external observer).
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Extending the model -  drawing bubbles

A more complex outcome that we can achieve with only small 
modifications is the emergent voronoi diagram (dirichelet 
tessellations). Voronoi diagrams are conventionally calculated 
using computational geometry. A voronoi diagram is a pattern which 
describes the minimal energy pathways between a set of points. 
Looking at such a diagram we can see that each initial point is 
separated from its immediate neighbours by being enclosed in a 
polygon, face joining the polygons of all its neighbours.

Taking the two procedures attract and repel we can make a small 
modification to the attract one, so that instead of turtles being 
attracted to the constant location 0 0 they are interested instead in 
another of the turtles acting as a “target”. So we can make two kinds 
of turtles – normal ones and targets. Both the normal turtles and the 
target turtles obey the repel rule, but the attract rule only applies to 
normal turtles, who try to stay at a particular radius from the target 
turtles.

to attract
   locals [targets]

ask turtles
[ 
   set targets turtles with [target = true]
   set closest-turtle min-one-of other 

targets [distance myself]
   set heading  towards closest-turtle
   ifelse ((distance closest-turtle ) < 

radius) [bk 1] [fd 1]
]

end

Emergent spatial tessellation of minimal path polygons 

In this series(left to right) a very large number of turtles slowly retreat 
from the stationary targets (larger dots) to form the boundaries of 
the voronoi tessellation. This is an example of an emergent self 
organised structure, where the algorithm goes with the flow of the 
problem to be solved, namely draw the equidistant boundaries given 
the initial distribution of points. The answer emerges naturally from 
the very simple process described above. 
The difference between the code for drawing a circle and the code 
for drawing a voronoi diagram using the traditional “computational 
geometry” approach is huge, the two trig functions described earlier 
have to be expanded to many pages of code dealing with complex 
maths and elaborate sorting and scheduling procedures in order to 
define the polygons, whereas the step from circle to voronoi using 
the attract and repel procedures is simply to have two kinds of turtles 
and a lot more of them!

All this is intended to illustrate the fundamental point about how 
representational methods can change when we use the turing 
machine to generate form. as we shall see in the next section 
the complexity of the emergent forms can be much higher than 
defining them in purely geometric ways. With these two texts 
we can represent a huge range of objects, and interestingly the 
representation hardly has to change at all to accommodate the 3rd 
dimension. 

The simulation begins with the two kinds of turtles sprijnkled randomly about ‘normal’ turtles (little)and ‘target’ ones (big).Slowly the smaller normal turtles retreat to the given 
radius distance in the attcat procedure, gathering on the boundaries in ever greater numbers. they cant go near other targets but end up in a position which is as far away from 
all the nearest targets

If the program models the process to be 
represented rather than the graphics of the 
outcome it is likely to be a better , shorter model. 

Image of mould growing in a coffee cup showing 
agglomeration of disc like elements into a voronoi 
like mat
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Attribute VB_Name = “Voronoibits”
    
   ‘-------------------------------------
-- changing datastructure to hold indeces 
into originalpoints
   ‘---------------------------
------------ rather than points 
11.6.03----------------------
    ‘ defining the cells of the voronoi 
diagram
    ‘ working 26 june 03
    
    Const pi = 3.1415926535
    Const yspace = 0
    Const xspace = 1
    
    
    Type pointedge
    pos As point        ‘position of in-
tersection
    Bedge(2) As Integer ‘indeces into  
boundary array where intersection occurs
    End Type
    
    
    Type intersectStuff
    outnode As point
    outnodeid As Integer  ‘index into vertex 
array for voronoi cell
    beforeinter As pointedge
    afterinter As pointedge
    End Type
    
    
    Const VERYSLOW = 0.7
    Type mypoint
        x As Double
        y As Double
        z As Double
        spacetype As Integer
        kuller As Integer
    End Type
    
    Type pair ‘to tie the triangle nos to 
the sorted angles
        value As Double
        index As Integer
    End Type
    
    Type delaunay
        p1 As Integer
        p2 As Integer
        p3 As Integer
        circcentre As mypoint       ‘ the 
coordinates of the centre of the circle by 
3 pts constructed by this point
        circrad As Double           ‘ the 
radius of this circle
    End Type
    
    Type cell
        item() As Integer
        tot As Integer
        area As Double
        id As Long
        spacetype As Integer
        jump As Boolean
        kuller As Integer
    End Type
       
    Public pts As Integer
    Public numtriangles As Integer
    Public originalpoints() As mypoint
    Public triangles() As delaunay
    Public cells() As cell
    Public neighbour() As cell
   
    Public cyclesmax As Long
    Public cycles As Long
    
  
  Sub voronoi(d As Integer)
    ReDim cells(1 To pts) As cell
    ReDim neighbour(1 To pts) As cell
    Dim i As Integer, j As Integer, k 
As Integer
    
    
    For i = 1 To pts
    cells(i).spacetype = originalpoints(i).
spacetype ‘ having been set in teatime
    cells(i).kuller = originalpoints(i).
kuller
    Next i
    
    
    cycles = 0
    numtriangles = 0
    ‘cyclesmax = pts ^ 3
    
    For i = 1 To pts
        For j = i + 1 To pts
            For k = j + 1 To pts
                ‘ the triangles array is popu-
lated in the sub drawcircle - sorry !!
                drawcircle_ifnone_inside 
i, j, k, pts
                cycles = cycles + 1
                ‘counterform.count_Click
            Next k
        Next j
    Next i
    
    collectcells (0)      ‘define data for 
all voronoi cells
    neighcells (0)        ‘define
 
  End Sub
    Sub collectcells(d As Integer) ‘ popu-
lates array cells with lists of all the 
vertex incident triangles of a point
    Dim v As Integer, N As Integer, t 
As Integer
    

    For v = 1 To pts ‘ go through all the 
original points
        N = 0
         ReDim cells(v).item(1 To 1)
        ‘ drawpoint originalpoints(V), 
acGreen, 2
         ‘ ThisDrawing.Regen acAllView-
ports
           
           For t = 1 To numtriangles ‘go 
through all triangles
              If triangles(t).p1 = v Or 
triangles(t).p2 = v Or triangles(t).p3 = 
v Then
                 N = N + 1 ‘’ T is index into a 
tri sharing a vertex with originalcells(V)
                 ReDim Preserve cells(v).
item(1 To N)
                 cells(v).item(N) = t
                 cells(v).tot = N
              End If
           Next t
           sortbyangle v, cells(v)
    Next v
    End Sub
    Function centre_gravity(this As delau-
nay) As mypoint
    Dim tx As Double, ty As Double, tz 
As Double
    tx = (originalpoints(this.
p1).x + originalpoints(this.p2).x + 
originalpoints(this.p3).x) / 3
    ty = (originalpoints(this.
p1).y + originalpoints(this.p2).y + 
originalpoints(this.p3).y) / 3
    tz = 0
    
    centre_gravity.x = tx
    centre_gravity.y = ty
    centre_gravity.z = tz
    
    End Function
    
    Sub sortbyangle(index As Integer, this 
As cell)
    Dim angles() As pair, i As Integer, O 
As mypoint, CG As mypoint
    ReDim angles(1 To this.tot) As pair
    O = originalpoints(index)
        For i = 1 To this.tot
            CG = centre_gravity(triangles(this.
item(i)))
            angles(i).value = getangle(O, 
CG)
            angles(i).index = this.item(i)
        Next i
    bubblesort angles, this.tot
        For i = 1 To this.tot
            this.item(i) = angles(i).index
        Next i
    
    End Sub
    Sub bubblesort(s() As pair, N As In-
teger)
     Dim index As Integer, c As Integer, 
swap As Integer, temp As pair

Do
    swap = False
    For c = 1 To N - 1

        If s(c).value > s(c + 1).value 
Then
            temp = s(c)
            s(c) = s(c + 1)
            s(c + 1) = temp
            swap = True
        End If

    Next c
Loop Until (swap = False)

End Sub
Function getangle(st As mypoint, fin As my-
point) As Double

Dim q As Integer, head As Double, add As 
Double
Dim xd As Double, yd As Double, r As Dou-
ble
‘ calculate quadrant
If fin.x > st.x Then
 If fin.y > st.y Then
    q = 1
  Else
     q = 2
 End If
  Else
   If fin.y < st.y Then
     q = 3
  Else
     q = 4
  End If
 End If
 
 
 Select Case q
 
 Case 1
    xd = fin.x - st.x
    yd = fin.y - st.y
    If xd = 0 Then
        r = pi / 2
    Else
        r = yd / xd
    End If
    add = 0
 Case 2
    yd = st.y - fin.y
    xd = fin.x - st.x
    add = 270
    If yd = 0 Then
        r = pi / 2
    Else

        r = xd / yd
    End If
 Case 3
 
    xd = st.x - fin.x
    yd = st.y - fin.y
    If xd = 0 Then
        r = pi / 2
    Else
        r = yd / xd
    End If
    add = 180
 Case 4
    xd = st.x - fin.x
    yd = fin.y - st.y
    If yd = 0 Then
        r = pi / 2
    Else
        r = xd / yd
   End If
    add = 90
 End Select

 If xd = 0 Then
    getangle = 90 + add
 Else
    getangle = ((Atn(r) / pi) * 180) + add
 End If
 
 
End Function
    Sub neighcells(d As Integer)
    
    Dim v As Integer, N As Integer, nbs As 
Integer, cp As Integer
     
    For v = 1 To pts
    nbs = 0                                 ‘go 
through the item list for this cell (based 
on vertex V)
       For cp = 1 To cells(v).tot - 1       
‘the indeces into array cells
            N = matchupcells(cells(v).
item(cp), cells(v).item(cp + 1), v) ‘two 
points on the voronoi region
            If N > 0 Then
                nbs = nbs + 1
                ReDim Preserve neighbour(v).
item(1 To nbs)
                 neighbour(v).item(nbs) 
= N
                 neighbour(v).tot = nbs
           End If
       Next cp
    Next v
    End Sub
   
Function matchupcells(p1 As Integer, p2 As 
Integer, current As Integer) As Integer

‘ find a cell (in array cells)which shares 
an edge p1 - p2 with this cell (current)
Dim m As Integer, v As Integer, cp As In-
teger

matchupcells = 0

        For v = 1 To pts
         If v <> current Then ‘dont look 
at you own list
            m = 0
            
            ‘a voronoi region can only share 
two verteces ( one edge) with any other
            ‘but since the edges are organ-
ised anti clockwise, the neighbouring cell
            ‘will be going the other way. 
so here we just look for two matches hope 
thats ok?
                For cp = 1 To cells(v).tot 
‘run through vertex list for this cell
                    If cells(v).item(cp) = 
p1 Then m = m + 1
                    If cells(v).item(cp) = 
p2 Then m = m + 1
                Next cp
                If m = 2 Then
                    matchupcells = v
                    Exit For       ‘dont go 
on looking once found a match
                End If
            End If
         Next v
    End Function
    
    Sub drawcircle_ifnone_inside(i As In-
teger, j As Integer, k As Integer, pts As 
Integer)
    Dim testcircle As delaunay
 
    testcircle.p1 = i
    testcircle.p2 = j
    testcircle.p3 = k
    circbythreepts testcircle
    If Not inside(testcircle, pts) Then
        ‘drawpoint testcircle.circcentre, 
acYellow, testcircle.circrad
        numtriangles = numtriangles + 1
        ReDim Preserve triangles(1 To 
numtriangles)
        triangles(numtriangles) = test-
circle
    End If
    
    End Sub
    
    Function inside(this As delaunay, pts 
As Integer) As Integer
    ‘ are there any points closer to the 
centre of this circle than the radius
    
    inside = False
    Dim i As Integer, dd As Double, cr 
As Double

    For i = 1 To pts
    ‘ignore points that are on this circle
           If i <> this.p1 And i <> this.p2 
And i <> this.p3 Then
            dd = distance(this.circcentre, 
originalpoints(i))
            cr = this.circrad
                If (dd < cr) Then
                    inside = True
                    Exit For
                 End If
          End If
     Next i
    End Function
    Sub circbythreepts(this As delaunay)
   
    Dim a As Double, b As Double, c As Dou-
ble, k As Double, h As Double, r As Double, 
d As Double, e As Double, f As Double
    Dim pos As mypoint
    Dim k1 As Double, k2 As Double, h1 As 
Double, h2 As Double
    
    a = originalpoints(this.p1).x: b = 
originalpoints(this.p1).y
    c = originalpoints(this.p2).x: d = 
originalpoints(this.p2).y
    e = originalpoints(this.p3).x: f = 
originalpoints(this.p3).y
    
    
    ‘three points (a,b), (c,d), (e,f)
    ‘k = ((a²+b²)(e-c) + (c²+d²)(a-e) + 
(e²+f²)(c-a)) / (2(b(e-c)+d(a-e)+f(c-a)))
    k1 = (((a ^ 2) + (b ^ 2)) * (e - c)) + 
(((c ^ 2) + (d ^ 2)) * (a - e)) + (((e ^ 2) 
+ (f ^ 2)) * (c - a))
    k2 = (2 * ((b * (e - c)) + (d * (a - e)) 
+ (f * (c - a))))
    
    k = k1 / k2
    
    ‘h = ((a²+b²)(f-d) + (c²+d²)(b-f) + 
(e²+f²)(d-b)) / (2(a(f-d)+c(b-f)+e(d-b)))
    h1 = (((a ^ 2) + (b ^ 2)) * (f - d)) + 
(((c ^ 2) + (d ^ 2)) * (b - f)) + (((e ^ 2) 
+ (f ^ 2)) * (d - b))
    h2 = (2 * (((a * (f - d)) + (c * (b - f)) 
+ (e * (d - b)))))
    h = h1 / h2
    
    ‘the circle center is (h,k) with radius; 
r² = (a-h)² + (b-k)²
    r = Sqr((a - h) ^ 2 + (b - k) ^ 2)
        
    pos.x = h: pos.y = k: pos.z = 0
    ‘’drawpoint pos, acYellow, r
    this.circcentre = pos
    this.circrad = r
    
    End Sub
    
    Sub convert(b As mypoint, f As mypoint, 
start() As Double, finish() As Double)
    
    start(0) = b.x
    start(1) = b.y
    start(2) = b.z
    finish(0) = f.x
    finish(1) = f.y
    finish(2) = f.z
    End Sub
    
    Function findcenter(pts As Integer) As 
mypoint
    Dim xt As Double, yt As Double
    
    xt = 0
    yt = 0
    
        For i = 1 To pts
            xt = xt + originalpoints(i).x
            yt = yt + originalpoints(i).y
        Next i
        
        findcenter.x = xt / pts
        findcenter.y = yt / pts
        findcenter.z = 0
    
    End Function
    
    
    
    Sub Draw_Line(b As mypoint, f As my-
point, c As Integer)
    Dim lineobj As AcadLine
    Dim mLineObj As AcadMLine
    Dim start(0 To 2) As Double, finish(0 
To 2) As Double
   
    convert b, f, start, finish
    
    Set lineobj = ThisDrawing.ModelSpace.
AddLine(start, finish)
    
    lineobj.color = c
    lineobj.Layer = “delaunay”
    ‘lineobj.Update
    
    
    End Sub
    Sub drawpoly(this As cell)
    Dim tri As delaunay
    Dim plineObj As AcadLWPolyline
‘changed to lw polyline so only duets of 
coords not trios
        Dim thepoly(0) As AcadEntity ‘thing 
to use in addregion
        Dim boundary As Variant ‘assign 
with addregion
        Dim boundy() As AcadRegion ‘thing 
you redim
       Dim acell As AcadRegion
        Dim numtri As Integer, thepoints() 

As Double, TPC As Integer
    numtri = this.tot * 2 - 1
    ReDim thepoints(numtri + 2) As Double
    TPC = 0
    
    ‘ loop through all the items getting the 
coordinates of the circlcentres that are
    ‘ inside the elements of the thetri-
angles array
    
    For i = 1 To this.tot
            thepoints(TPC) = triangles(this.
item(i)).circcentre.x
            TPC = TPC + 1
            thepoints(TPC) = triangles(this.
item(i)).circcentre.y
            TPC = TPC + 1
           ‘ thepoints(TPC) = triangles(this.
item(i)).circcentre.z
           ‘ TPC = TPC + 1
    Next i
   thepoints(TPC) = thepoints(0)
    TPC = TPC + 1: thepoints(TPC) = thep-
oints(1)
   ‘TPC = TPC + 1: thepoints(TPC) = thep-
oints(2)
   
    If TPC > 3 Then
    On Error Resume Next    ‘got crash 
on huge poly
          Set plineObj = ThisDrawing.Model-
Space.AddLightWeightPolyline(thepoints)
          If plineObj.area > 0 Then
          
          Set acell = makeregion(plineObj)
        
          On Error Resume Next
             acell.Boolean acIntersec-
tion, bound
             this.area = acell.area
             this.id = acell.ObjectID 
‘changed to acell
             If this.spacetype = 1 Then
             acell.color = this.kuller
             Else
             acell.color = acWhite
             End If
             
            ‘ acell.Update
            ‘ ThisDrawing.Regen acAc-
tiveViewport
             makeboundaryregion 0
        
        End If
        

    
    End If
    
    End Sub
    
   
    Sub drawcircle(x As Variant, y As Vari-
ant, kuller As Integer, size As Integer)
    Dim p(2) As Double, circ As AcadCircle
    p(0) = x: p(1) = y: p(2) = 0
    Set circ = ThisDrawing.ModelSpace.
AddCircle(p, size)
    circ.color = kuller
   ‘ circ.Update
    
    End Sub
    Function random(bn As Double, tn As 
Double) As Double
    
        random = ((tn - bn + 1) * Rnd 
+ bn)
    
    End Function
   
  
    Function distance(startp As mypoint, 
endp As mypoint) As Double
    Dim xd As Double, yd As Double
    xd = startp.x - endp.x
    yd = startp.y - endp.y
    distance = Sqr(xd * xd + yd * yd)
    End Function
    
        
    Sub drawpoint(pos As mypoint, c As In-
teger, r As Double)
        ‘ This example creates a point in 
model space.
        Dim circleObj As AcadCircle
        Dim location(0 To 2) As Double
        location(0) = pos.x
        location(1) = pos.y
        location(2) = pos.z
        ‘ Create the point
          Set circleObj = ThisDrawing.Mod-
elSpace.AddCircle(location, r)
        circleObj.color = c
        ‘ZoomAll
    End Sub
    
    

The code on this page can be contrasted 
with the short snippet on the previous page. 
both are doing essentially the same thing 
- generating the minimal path tessellation 
known as a Voronoi Diagram. However one 
is written in NetLogo as parallel process 
of dynamic systems of turtles, the other in 
BASIC  as an exercise in computational 
geometry. (code by the author). not only 
is the BASIC enormously longer, but it 
is also much more restrictive in that it 
doesn’t allow for easy manipulation of the 
underlying generating points or alterations 
of the dynamics of the particles. the 
only advantage this approach has over 
the emergent version is that the defined 
polygons are explicitly defined by ordered 
line segments whereas the images taken 
from the agent based examples would need 
a little post processing to define them.

BASIC is a very old programming language 
used in many windows applications to 
automate operations. See chapter 3 for a 
discussion of the badness of BASIC

Voronoi by computational Geometry. this 
was generated as part of an experiment 
in recursive voronoi diagrams where each 
generation provides the seed points for the 
next diagram

12 13



Moving into the 3rd dimension

The code below is pretty much the same as before (there are a few differences due to the 3d version of the 
language being a revision behind the 2d version but we can ignore those ) apart from that the only difference is the 
use of the word pitch as well as heading, which allows the turtles to point towards things in 3d space

to attract

ask nodes
[ 
 set closest-turtle min-one-of targets with other targets  [distance  myself]
 set heading  towards-nowrap closest-turtle
 set pitch towards-pitch-nowrap closest-turtle
 ifelse ((distance closest-turtle ) < radius) [bk 1] [fd 1]
]

end

to repel-nodes

ask nodes

    [
    set closest-turtle min-one-of nodes with other nodes  [    distance  myself]
                    
    set heading towards-nowrap closest-turtle
    set pitch towards-pitch-nowrap closest-turtle
    bk repel-strength
   ]
end

When running these simulations another thing that distinguishes this approach from geometry is apparent - rather 
than in the top down computational approach where a lot of works goes on until the “solution” in presented to you 
in one fell swoop, here the emergent organisation occurs as a visible process that sometimes has to be teased 
along with small tweaks of attract and repel values. Sometimes the whole thing descends into a chaotic muddle 
and cannot be retrieved without stopping and starting again. The algorithm for stitching the turtles together with line 
shaped turtles is typical of the bottom up approach. 

Once the closest turtle has been found we ask each node to create a link with it. the “link” turtle is a special feature 
of netlogo which behaves intelligently in that if the target node is already connected then this is not attempted 
again. in he course of a run the ‘nearest turtle’ will change so it is necessary to clear out existing links - this is easily 
accomplished with ‘clear-links’ (a special button - not shown - is needed for this)

From rings of points to spherical clouds. Below, using a link turtle to join the dots
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ask nodes

    [
    set closest-turtle min-one-of  other nodes [distance  myself]
       set heading towards-nowrap closest-turtle
       set pitch towards-pitch-nowrap closest-turtle
       bk repel-strength
       create-link-with closest-turtle
            
    ]
end

One might ask why this simple algorithm doesn’t lead to links which cross the middle of the 
emerging  spheroid, but remember that the attract and repel procedures have a habit of 
making sure that everyone’s nearest neighbour is to be found on the ‘shell’. Where several 
spheroids meet (as in the images facing) a certain amount of negotiation takes place with 
things jiggling about until most people are happy. The important point here is that no more 
code has to be written, this is an emergent outcome of the process provided for free by the 
dynamics of the system.

After everything has settled down (the ‘emergent consensus’ proposed at the start of this 
chapter) the  self organised turtle configurations can be exported to other packages for 
further processing. In the images shown left the turtle coordinates are read into Autocad 
using a small visual basic script, and spheres and cylinders are drawn between the points 
of the nodes and links. Further processing to tile up the mesh and rendering can be 
achieved with your favourite CAD package.

further processing to develop the emergent distributions into varieties of forms
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